릿지 회귀로 예측력 높이기
릿지 회귀는 과적합 문제를 해결하고 모델의 예측력을 향상시키기 위해 사용되는 회귀 알고리즘입니다. 이 방법은 L2 정규화를 통해 회귀 계수를 제어하여 모델의 복잡성을 줄입니다. 릿지 회귀는 다중공선성 문제를 효과적으로 처리하며, 높은 차원의 데이터에서도 안정적인 성능을 보입니다. 데이터 분석 및 예측의 다양한 분야에서 널리 활용되며, 특히 변수가 많은 경우에 유용합니다. 본 글에서는 릿지 회귀의 원리와 적용 방법에 대해 자세히 살펴보겠습니다.