가치 기반 강화 학습의 모든 것
가치 기반 강화 학습은 에이전트가 주어진 환경에서 최적의 행동을 선택하기 위해 각 상태의 가치를 평가하는 기법입니다. 이 방법은 주로 가치 함수와 행동 선택에 대한 정보를 활용하여 학습을 진행합니다. 대표적인 알고리즘으로는 Q-learning과 SARSA가 있으며, 이들은 실제 상황에서 에이전트가 경험을 통해 지식을 쌓아가는 데 효과적입니다. 가치 기반 접근법은 복잡한 문제를 해결할 수 있게 해 주며, 여러 분야에서 널리 응용되고 있습니다. 본 포스트에서는 가치 기반 강화 학습의 원리와 응용 사례에 대해 자세히 살펴보겠습니다.