선형 회귀로 예측 정확도 높이기
선형 회귀 분석은 데이터 간의 관계를 모델링하여 예측을 수행하는 통계 기법입니다. 이 방법은 독립 변수와 종속 변수 간의 선형 관계를 기반으로 하여 예측 정확도를 높이는 데 유용합니다. 선형 회귀를 통해 얻는 회귀 계수는 각 변수의 영향을 명확히 이해할 수 있게 해 줍니다. 또한, 모델의 유효성을 평가하기 위해 결정 계수와 같은 지표를 활용할 수 있습니다. 이 포스팅에서는 선형 회귀의 기본 개념과 예측 성능을 향상시키는 방법에 대해 다룰 것입니다.