차원 축소 알고리즘으로 데이터 최적화하기

차원 축소 알고리즘으로 데이터 최적화하기

차원 축소 알고리즘은 고차원 데이터의 복잡성을 줄여 더 간단한 형태로 분석할 수 있도록 해주는 기법입니다. 이 알고리즘은 데이터의 중요 정보를 보존하면서 불필요한 변수를 제거하여 모델 성능을 향상시킵니다. 대표적인 차원 축소 방법으로는 주성분 분석(PCA)과 t-SNE가 있습니다. 비지도 학습에서 이 알고리즘은 데이터 시각화와 군집화 작업에 매우 유용하게 활용됩니다. 이를 통해 분석가는 데이터의 핵심 패턴을 쉽게 식별할 수 있습니다.