ROC-AUC로 모델 성능 평가하기
ROC-AUC는 분류 모델의 성능을 평가하는 중요한 지표로, 모델이 양성과 음성을 얼마나 잘 구분하는지를 나타냅니다. 이 지표는 Receiver Operating Characteristic Curve(ROC 곡선) 아래의 면적을 측정하여, 값이 1에 가까울수록 모델의 성능이 우수함을 의미합니다. ROC-AUC는 다양한 임계값에 대한 모델의 민감도와 특이도를 분석하여 모델의 전반적인 효용성을 평가하는 데 도움을 줍니다. 이를 통해 사용자들은 각 모델의 개별 성능을 직관적으로 이해하고 신뢰할 수 있는 결정을 내릴 수 있습니다. 이러한 특성 덕분에 ROC-AUC는 머신러닝 분야에서 널리 사용되는 평가지표로 자리 잡고 있습니다.