벡터자기회귀(VAR)로 시계열 분석하기

벡터자기회귀(VAR)로 시계열 분석하기

벡터자기회귀(VAR)는 다변량 시계열 데이터를 분석하는 데 사용되는 강력한 통계 모델입니다. 이 기법은 여러 변수 간의 상호 의존성을 고려하여 미래 값을 예측할 수 있습니다. VAR 모델은 각각의 변수들이 다른 변수들에 의해 영향을 받는다는 가정을 바탕으로 하며, 데이터의 패턴을 효과적으로 포착합니다. 이 글에서는 VAR 모델의 기본 개념과 적용 방법을 살펴보며, 실제 데이터를 통한 시계열 분석의 예시도 제공합니다. 통계적 모델링의 기초와 응용을 이해하는 데 큰 도움을 줄 것입니다.

SARIMA로 시계열 분석 완벽 이해하기

SARIMA로 시계열 분석 완벽 이해하기

SARIMA(Seasonal ARIMA)는 시계열 데이터를 분석하는 데 효과적인 모델링 기법입니다. 이 방법은 계절성과 추세를 함께 고려하여 예측의 정확성을 높입니다. 데이터의 패턴을 이해하고 이를 기반으로 미래를 예측할 수 있는 강력한 도구입니다. SARIMA 모델은 시계열 데이터의 주기적인 변동을 분석함으로써 더 나은 의사결정을 지원합니다. 본 포스트에서는 SARIMA의 기본 개념과 적용 방법을 자세히 살펴보겠습니다.

ARIMA로 시계열 예측하기

ARIMA로 시계열 예측하기

ARIMA(자기 회귀 적분 이동 평균)는 시계열 데이터를 분석하고 예측하는 데 널리 사용되는 통계 모델입니다. 이 모델은 데이터의 자기 상관성을 고려하여 과거의 값을 기반으로 미래의 값을 예측합니다. ARIMA는 비정상 시계열 데이터를 정규화하는 과정인 ‘적분(integration)’을 포함하여, 다양한 패턴과 추세를 효과적으로 포착합니다. 이를 통해 경제, 기후, 수요 예측 등 다양한 분야에서 활용되고 있습니다. 이 글에서는 ARIMA 모델의 기본 개념과 활용 방법에 대해 알아보겠습니다.

시계열 분석 모델링 기법 완전 정복

시계열 분석 모델링 기법 완전 정복

시계열 분석은 시간에 따라 변하는 데이터를 이해하고 예측하는 데 매우 중요한 통계 기법입니다. 이 글에서는 시계열 분석의 다양한 모델링 기법에 대해 깊이 있게 알아봅니다. ARIMA, SARIMA, 그리고 Exponential Smoothing 같은 모델은 각각의 특징과 활용 사례를 가지고 있습니다. 이를 통해 독자는 자신에게 맞는 분석 기법을 선택할 수 있는 통찰을 얻게 될 것입니다. 시계열 분석의 원리를 이해하고 효과적으로 활용하는 방법을 배워보세요.