재현율로 머신러닝 모델 평가하기

재현율로 머신러닝 모델 평가하기

재현율(Recall)은 머신러닝 분류 모델의 성능을 평가하는 중요한 지표로, 실제 양성 중 올바르게 예측한 비율을 나타냅니다. 높은 재현율은 모델이 양성 사례를 잘 탐지하고 있다는 것을 의미하지만, 항상 최적의 성능을 보장하지는 않습니다. 재현율과 함께 정밀도(Precision)를 고려하면 모델의 전반적인 성능을 더 잘 이해할 수 있습니다. 이 글에서는 재현율의 개념, 계산 방법 및 활용 사례를 살펴보고, 분류 모델 평가 시 재현율이 가지는 중요성을 강조합니다. 머신러닝 모델 평가에 있어 재현율의 효과적인 활용법을 익히는 기회를 가져보세요.