모델 기반 강화 학습 완벽 가이드
모델 기반 강화 학습은 환경 모델을 학습하여 의사결정 과정을 최적화하는 기법입니다. 이 방법은 에이전트가 환경에 대한 예측을 사용하여 행동을 계획하고, 더욱 효율적으로 학습할 수 있도록 돕습니다. 특히 샘플 효율성을 높여주는 장점이 있어, 제한된 데이터로도 뛰어난 성과를 낼 수 있습니다. 이 가이드는 모델 기반 강화 학습의 기본 개념, 장점, 응용 사례를 상세히 설명합니다. 머신러닝 분야에서 강화 학습의 발전과 함께 이 접근법의 중요성이 더욱 부각되고 있습니다.