최대-최소 스케일링 완벽 가이드

최대-최소 스케일링 완벽 가이드

최대-최소 스케일링은 데이터 전처리 과정에서 필수적인 기법 중 하나입니다. 이 방법은 데이터의 범위를 0과 1 사이로 조정하여 다양한 기계 학습 알고리즘에서 효과적으로 작동하도록 합니다. 최대값과 최소값을 이용해 각 데이터를 변환하므로, 스케일링 후에도 데이터의 분포는 유지됩니다. 특히, 신경망 모델과 같은 알고리즘에서 최적의 성능을 발휘할 수 있도록 도와줍니다. 이 가이드를 통해 최대-최소 스케일링의 개념과 활용 방법을 자세히 알아보세요.

다층 퍼셉트론의 원리와 활용법

다층 퍼셉트론의 원리와 활용법

다층 퍼셉트론(Multilayer Perceptron, MLP)은 인공 신경망의 한 형태로, 여러 개의 층을 통해 입력 데이터를 처리합니다. 각 층은 노드(또는 뉴런)로 구성되어 있으며, 비선형 활성화 함수를 사용하여 복잡한 패턴을 학습할 수 있습니다. MLP는 주로 분류 및 회귀 문제에 사용되며, 다양한 분야에서 실행 가능한 솔루션을 제공합니다. 이 모델은 딥러닝의 기초를 이루며, 이미지 인식, 자연어 처리 등에서 높은 성능을 보입니다. 다층 퍼셉트론의 원리를 이해하면, 더 발전된 신경망 모델을 만드는 데 큰 도움이 됩니다.