랜드 지수로 모델 평가하기

랜드 지수로 모델 평가하기

랜드 지수(Rand Index)는 군집 모델의 성능을 평가하는 기법으로, 두 개의 데이터 샘플 간의 유사성을 측정합니다. 이 지수는 샘플이 같은 군집에 속하거나 다른 군집에 속하는 경우를 기반으로 계산되어, 클러스터링 결과의 정확성을 파악하는 데 도움을 줍니다. 랜드 지수는 값이 0에서 1 사이에 위치하며, 1에 가까울수록 우수한 군집화를 나타냅니다. 따라서 다양한 군집 알고리즘의 결과를 비교하고 평가하는 데 효과적으로 활용됩니다. 이 글에서는 랜드 지수의 정의와 계산 방법을 소개하고, 이를 활용한 모델 평가의 중요성에 대해 논의합니다.

던 지수로 클러스터링 평가하기

던 지수로 클러스터링 평가하기

던 지수(Dunn Index)는 클러스터링 성능을 평가하는 중요한 지표입니다. 이 지수는 군집 간의 분리 정도와 군집 내의 응집도를 동시에 고려하여 계산됩니다. 높은 던 지수는 군집 간의 간섭이 적고 클러스터 내의 데이터 포인트가 밀집해 있음을 나타냅니다. 따라서 던 지수는 다양한 클러스터링 알고리즘의 효과성을 비교하는 데 유용한 도구로 사용됩니다. 본 포스팅에서는 던 지수의 개념과 활용 방법을 상세히 설명합니다.