에이다부스트로 머신러닝 성능 높이기

에이다부스트로 머신러닝 성능 높이기

에이다부스트는 머신러닝의 지도 학습 기법 중 하나로, 분류 알고리즘의 성능을 개선하는 데 효과적입니다. 기본 원리는 약한 학습기를 결합하여 강력한 모델을 만드는 것으로, 반복적인 학습을 통해 오류를 줄입니다. 각 학습기가 잘못 분류한 데이터에 더 높은 가중치를 부여하여 성능을 향상시키는 방식입니다. 에이다부스트는 다양한 분야에서 활발히 활용되며, 특히 데이터 불균형 문제를 극복하는 데 유용합니다. 이 글에서는 에이다부스트의 원리와 장점, 실제 적용 사례를 통해 머신러닝 성능 향상 가능성을 알아봅니다.

랜덤 포레스트로 예측 정확도 높이기

랜덤 포레스트로 예측 정확도 높이기

랜덤 포레스트는 여러 개의 결정 트리를 결합하여 예측의 정확도를 높이는 강력한 머신러닝 알고리즘입니다. 이 기법은 특히 분류 문제에 효과적이며, 각 트리의 예측 결과를 평균화하여 최종 결정을 내립니다. 랜덤 포레스트는 과적합(overfitting)의 위험을 낮추고, 더 나은 일반화 성능을 보여줍니다. 또한, 변수 중요도를 평가하는 기능이 있어 데이터 분석에 유용합니다. 이러한 특성 덕분에 랜덤 포레스트는 실무에서도 널리 활용되고 있습니다.