차원 축소로 데이터 분석 최적화하기
차원 축소는 고차원 데이터의 복잡성을 줄이고 분석 효율성을 향상시키는 중요한 기법입니다. 이 과정은 데이터에서 불필요한 정보를 제거하고, 핵심 변수만을 남겨 데이터의 차원을 줄입니다. 이를 통해 모델의 학습 속도를 높이고, 과적합을 방지하여 예측 성능을 개선할 수 있습니다. 다양한 기법들 중에서 PCA(주성분 분석)와 t-SNE가 널리 사용되며, 각 기법의 특성과 장점을 이해하는 것이 중요합니다. 본 포스팅에서는 차원 축소의 이론과 실제 적용 사례를 통해 데이터 분석의 최적화 방법을 살펴보겠습니다.