랜드 지수로 모델 평가하기

랜드 지수로 모델 평가하기

랜드 지수(Rand Index)는 군집 모델의 성능을 평가하는 기법으로, 두 개의 데이터 샘플 간의 유사성을 측정합니다. 이 지수는 샘플이 같은 군집에 속하거나 다른 군집에 속하는 경우를 기반으로 계산되어, 클러스터링 결과의 정확성을 파악하는 데 도움을 줍니다. 랜드 지수는 값이 0에서 1 사이에 위치하며, 1에 가까울수록 우수한 군집화를 나타냅니다. 따라서 다양한 군집 알고리즘의 결과를 비교하고 평가하는 데 효과적으로 활용됩니다. 이 글에서는 랜드 지수의 정의와 계산 방법을 소개하고, 이를 활용한 모델 평가의 중요성에 대해 논의합니다.

선형 회귀의 원리와 활용법

선형회귀 원리와 활용법

선형 회귀는 변수 간의 관계를 설명하는 기본적인 회귀 분석 기법입니다. 이 방법은 독립변수와 종속변수 간의 선형 관계를 모델링하여, 예측 및 데이터 분석에 널리 사용됩니다. 머신러닝의 지도 학습 중 하나로, 다양한 분야에서 활용될 수 있어 실용성이 높습니다. 선형 회귀 모델은 주어진 데이터에 가장 적합한 직선을 찾아내기 위해 최소제곱법을 사용합니다. 이를 통해 우리는 데이터 간의 관계를 이해하고, 미래의 값을 예측하는 데 유용한 도구로 활용할 수 있습니다.

다중 선형 회귀의 기초 이해하기

다중 선형 회귀의 기초 이해하기

다중 선형 회귀는 여러 독립 변수가 종속 변수에 미치는 영향을 분석하는 회귀 알고리즘입니다. 이 기법은 머신러닝의 지도 학습 분류에 속하며, 변수 간의 관계를 모델링하여 예측력을 향상하는 데 사용됩니다. 다중 선형 회귀는 단순 선형 회귀의 확장으로, 여러 요인을 동시에 고려할 수 있습니다. 모델의 추정된 계수는 각 독립 변수가 종속 변수에 미치는 기여도를 나타내며, 이를 통해 데이터 분석가와 연구자들은 복잡한 데이터를 이해하고 예측할 수 있습니다. 본 포스팅에서는 다중 선형 회귀의 기본 개념과 활용 사례를 소개합니다.