분류 모델 평가 지표 완벽 가이드
분류 모델 평가는 머신러닝의 핵심 과정으로, 모델의 성능을 객관적으로 확인하는 데 필수적입니다. 다양한 평가 지표가 존재하며, 이들 각각은 특정한 목적에 맞춰 사용됩니다. 정확도, 정밀도, 재현율, F1 점수 등의 지표를 통해 모델의 강점과 약점을 파악할 수 있습니다. 이 가이드에서는 각 지표의 개념과 활용 방법을 상세히 설명합니다. 올바른 평가 지표를 선택하여 모델의 신뢰성과 효과를 극대화하는 방법을 배우세요.