Q-러닝으로 강화 학습 마스터하기
Q-러닝은 강화 학습의 대표적인 가치 기반 방법으로, 에이전트가 최적의 행동을 선택하기 위해 사용하는 알고리즘입니다. Q-러닝은 환경으로부터 받은 보상을 기반으로 행동의 가치를 업데이트하여, 점진적으로 최적의 정책을 학습합니다. 이 과정에서 Q-값을 학습하여 최적의 행동 선택을 위한 의사결정을 지원합니다. Q-러닝의 강력함은 탐험과 활용의 균형을 통해 복잡한 문제를 해결하는 데 있습니다. 머신러닝 분야에서 Q-러닝을 마스터한다면, 다양한 응용 사례에서 효과적으로 적용할 수 있습니다.